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It is shown that use of the methods of the thermodynamics of irreversible processes allows one to evaluate 
the influence of blowing a homogenous gas on the kinetic energy losses in tube flow. Increase of blowing 
decreases the kinetic energy losses. 

Use of the methods of the thermodynamics of irreversible processes gives effective results in the study of heat and 

mass transfer in homogeneous liquids, solutions and gas mixtures under various conditions. By these methods the most 

important characteristics of fluid flow in constant and variable-area channels may be established. 

On the basis of an analysis of a system of linear Onsager equations in the analytical  description of internal friction 

as transfer of kinetic energy of translational motion and the use of the Curie principle, the authors of [1] developed a 
theory for the separation of molecular solutions and binary gas mixtures. Experimental data on separation of a solution 

of NaC1 in water, and of a gaseous mixture of nitrogen and oxygen in a rotary separating column under isothermal con- 

ditions confirm the theoretical conclusions reached by the authors. 

A generalization of experimental data has enabled the optimum conditions of operation of separating columns to 
be established. 

A method of the thermodynamics of irreversible processes was used in [2] to study the flow of a mul t i -component  

liquid through a porous medium. It was shown that the influence of friction forces on the flow of a viscous liquid, and 

the motion of the centers of gravity of the liquid phase, as well as heat conduction and diffusion, cause an increase in 

entropy whose value may serve as an effective parameter of a system consisting of a liquid and solid phase. 

In the present paper, on the basis of the method of thermodynamics of irreversible processes, an evaluation is 

made of the loss of kinetic energy of a gas moving in a tube into which a homogeneous gas is blown. 

It was shown in [.~] that a change of state process in a viscous liquid moving continuously in channels may be con- 

sidered as being in equilibrium, in spite of a finite and arbitrarily large flow velocity. Because of the presence of vis- 

cosity and heat conduction in real liquids, this kind of process is accompanied by dissipation of mechanical  energy, i . e . ,  
the irreversible conversion of mechanical  energy into heat, and a decrease of the work capacity of the gas. The amount 

of mechanical  energy irreversibly converted into internal energy of the gas is only part of the mechanical  energy con- 

verted into heat energy under the influence of forces of surface and internal friction. The other part is again converted 

into kinetic energy of the flow. The relation between these amounts depends on the flow conditions and may be de- 

termined by a thermodynamic analysis of the equilibrium-irreversible flow processes. The second law of thermody- 
namics, which determines the conditions of conversion of heat into mechanical  energy, and, through entropy production, 

the numerical  expression of the degree of irreversibility of real processes, has a particular significance in such an analysis. 

Friction heat causes an entropy increase in the gas to the same extent as does the heat obtained by the gas as a result of 

heat exchange with the surrounding medium. Cooling of the gas, on the other hand, produces a decrease in entropy. 

In many cases, particularly large flow velocities and small contact times between gas and surface, the heat trans- 

fer is comparatively small; the action of friction forces is the most appreciable. 

In thermally insulated gas flow, and in cases where the influence of heat transfer on the properties of the moving 

gas is small, we may consider the entropy increase to be a measure of the loss of translational kinetic energy of the 

moving gas, due to the action of friction forces. Having determined the increase of entropy of the gas, we may evalu- 

ate the corresponding loss of kinetic energy. Therefore, the entropy increment of the flow of a viscous gas in the con- 

ditions mentioned is the main thermodynamic property of the flow processes. It enables us to consider as "loss" energy 
only that portion of the total energy which goes toward increase of molecular or intramolecular motion, and is not 

capable of subsequent conversion into mechanical  work. 

The loss of kinetic energy in friction is steady flow of a gas along a cylindrical tube of constant area at given 

values of initial  pressure and back pressure is determined by the product of the absolute temperature T z of the gas at the 

end of the tube and the entropy increment AS in the section of the tube examined: 

• w ...... To As. (1) 

The entropy increment AS may be expressed in terms of the heat liberated by the work of friction forces. From 

an examination of the change of state process of some element  of the moving liquid, in a coordinate system moving 
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with it, we may assume that the friction forces acting on the boundaries of the chosen liquid element  are e• 

forces with respect to this element.  Therefore, the heat liberated due to dissipation of mechanical  energy may be 

considered to be equivalent to the heat obtained externally by the given liquid element .  The friction heat causes an 

entropy increment in the element,  as does heat obtained through heat exchange with the surrounding medium or with 

neighboring liquid elements.  

If the mass of the volume of liquid examined is 1 kg, we may write, on the basis of the second law of thermo- 

dynamics, 

ds = dq,/T. (2) 

The action of friction forces tending to slow the motion down causes a pressure drop, whose value in the section dx of a 

tube of diameter D is 

cf u 2 
dp = ~ D - - p d x .  (3) 

A decrease of potential pressure energy of the gas of amount z~p/p corresponds to a pressure drop of amount dp. 

This energy is converted into internal energy of the gas (heat of friction). Therefore, 

2 Q  u2dx.  ( 4 )  
dq f -- D 

In (3) and (4), the flow veloci ty u is assumed to be constant over the tube cross section, which does not occur in 

the general case. Therefore, in place of  veloci ty u constant over the tube, a mean veloci ty u m should be used in these 

equations 

ds - 2 cf um dx. 
D T (~) 

The entropy increment of 1 kg of gas in a tube of length l is determined from the equation 

AS--: f 

In order to integrate (6), we establish the change in 

equations. 

The Reynolds equations for t ime-averaged veloci ty 

center of a cross section of the tube, have the form 

9 

2 ct u-,, dx.  
D T 

(6) 

mean fluid veloci ty  u m along the tube, using the momentum 

components, in cylindrical coordinates with origin at the 

c?u Ou u - - + v  
Ox Or 

17, . . . .  i N - -  
&" Or 

1 c)p 1 1 d 

Ox ~,, r Or 

1 dp _,__ 1 Or 

p Ox ' p Ox 

(: r), (7) 

(s) 

where 

tube: 

6~U " V' 
~ , =  --Ix ~u '  . (9)  

dr 

We assume a linear distribution of transverse veloci ty component v and shearing stress r over the section of the 

v = - -  vw r / R  . 

Averaging the values in (7) over the tube section, and taking (10) and (11) into account, we obtain 

v . , -  2 r, r Or , , , - ~  ,~-  R 

(io) 

(1i) 
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Equation (7) for the flow averaged over the tube section may be written as follows: 

dum 0.., 1 dp cf ,2 
U r n - -  i ---'~" Um - -  @ - -  Urn. 

dx 2 R p dx R 
( 1 2 )  

The mean velocity in the tube section is calculated from 

R 

___ 2 I u,n R 2 u rdr .  (13) 
ly 
0 

In [4] an expression was obtained from equations (q)--(9) for the distribution of longitudinal velocity component 
over the radius of the tube in the form 

u~--u 1 (ln 1+ Vr-TR --2 V'r.,-rR) 1 v~, X 
Up z 1 - -  Vr---/R 4 ~.~ up 

Where 

X (  In l -i- V r / R  )2 
1 - -  g r / R  - -  2 F ~  , 

(14.) 

We now obtain an expression from (18) for the mean velocity over the tube section 

16 U_p_p v~ 
u m -:: u~ . . . .  L 0 . 5 4 1  - -  . 

15 ~ "** 

Equation (12) is reduced to a linear differential equation of the first order in y = u ~  

Y'-i f(x)u-t-g(x)=O, 

(15) 

(16) 

where 

1 ( 2 c  t - j ) ;  g ( x ) - -  2 d p .  v_,, , d ,, 
I(x)== ~ o dx '  J -  u,,'; u - dx u;,. 

Solving (16) for the unknown function u m, and determining the constant of integration from the condition that 

when x = O, u m = Umi, we obtain 

u m = e x p  - -  (2cf - j )dx  u~i  - -  . 2 
9 

] }' dp [- ~' j) dx dx 
.2. 

dx X exp  L R J  
(17) 

The change of relative velocity u m -- Um/Umi in terms of the dimensionless coordinate x = x/D is given by the 
equation 

[ i  ; u , ~ = e x p  - -  (2c r - j )  dx 1 - -  2 
2 

,_, ( p u,ni 

]? ><exp  2 ( - % t - - J ) ~  d~ 

_ _  d__Pv 
dx ~\ 

(18) 

tube 
The entropy increment is determined from the expression obtained for the distribution of mean velocity along the 

X 

J T exp[--2~(2cf--j) dx] {u,~ i - - f - - - -  
x i 

X exp [ 2 i(2Q--j) dx] dx} dx. 

2 dp , ,  

p dx ~" 

(19) 
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In the absence of a cross supply of  mass, which corresponds to flow in a tube with impermeable  walls, the pa r am-  
eter j, which is a measure of  the influence of  mass transfer through the tube walls, is zero. The solution of (16) has the 
form 

u,,,o = e x p  2Cfo dx ~ u ,n i - -  
2 dp 
9 dx 

X 

(2o) 

/ .0  

o,6 

t q ~ t  t 

! 

2 
8 /2  /6 x 

Fig. 1. Chance of veloci ty  along tube: 
1) j = 0. 001; 2) 0. 002; 3) 0. 004; solid 
l i n e - a c c o r d i n g  to (22); broken l i n e -  

according to (18). 
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Fig. 2. Entropy increment  along tube 

according to (23): 1, 2, 3) see Fig. 1. 

Replacing the dimensional  coordinate x in (20) by the dimensionless x = x/D, and substituting the expression for 

Umo into (6), we obtain a formula for the entropy increment  in isothermal flow in a tube with impermeab le  walls: 

Aso J T exp - - 2  2ffod-X ! 9 dx 
0 

(21) 
X e x p [  2 fffod~ ] d~}d~'. 

Figure 1 shows the change of re la t ive  veloci ty ,  as determined from (18), at various levels of  blowing, tt is c lear  
that the ve loc i ty  drop along the length is the less, the greater the level  of blowing, and, at large flow rates of blown 

gas, the ve loc i ty  even increases along the length. This follows from the continuity equation.  

A comparison is made  on the same graph of the ve loc i ty  along the tube in the presence and absence of  blowing, 

which from (17) and (20) is determined by the relat ion 

Et t um - exp 2% dx --  (2Q - -  j) .i,,\'~ 
Umo 

X 1-- 2 
Hmi ~X ) 

2 
2 _ exp 

um i dx 
IS4c, (22) 

It is c lear  from the graph that when gases are blown through the  porous wall,  the flow in the tube becomes more 

stable,  and the loss of kinet ic  energy along the tube decreases.  

Figure 2 shows a comparison of the entropy increment  along the tube in the presence and absence of blowing, which 

from (19) and (21) is determined by the relat ion 
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ex [-fl4c, 2Jt l  A So 
0 

X 1 - -  u 2" dx exp ( 4 c f - - 2 ] ) d x  dx~ d-x• 
p ml 

0 

(2S) 

It is clear from the graph that the entropy increment along the tube is the less, the greater the level of blowing. 
To find the energy balance, it is necessary, of course, to take account of the energy expended in blowing gas through 
the porous wall. 

In drawing the graphs, values of the local friction factor cf in the conditions examined, at various blowing levels, 
were calculated according to the method described in [6]; the local friction factor cf0 for isothermal flow in an imperme- 
able tube was determined from [7]. 

The initial air flow velocity was assumed to be 100 m/sec, and the air density corresponded to a temperature of 
300 ~ K. 

Notation: 

dq-amount of heat received by I kg of fluid from neighboring elements due to heat conduction dq' and liberated 
due to dissipation of mechanical energy by friction dqf; ~t-constant in the Prandtl mixing length formula; x, r - longi -  
tudinal and transverse coordinates; u, v-longitudinal and transverse velocity components; p-f low density. Subscripts: 
w-parameters at wall; o-parameters at an impermeable wall; c-parameters on tube axis. 
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